Symmetry and Intertwining Operators for the Nonlocal Gross-Pitaevskii Equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ja n 20 04 Vortices in nonlocal Gross - Pitaevskii equation

We consider vortices in the nonlocal two-dimensional Gross-Pitaevskii equation with the interaction potential having the Lorentz-shaped dependence on the relative momentum. It is shown that in the Fourier series expansion with respect to the polar angle the unstable modes of the axial n-fold vortex have orbital numbers l satisfying 0 < |l| < 2|n|, similar as in the local model. Numerical simula...

متن کامل

Vortex helices for the Gross-Pitaevskii equation

We prove the existence of travelling vortex helices to the Gross-Pitaevskii equation in R. These solutions have an infinite energy, are periodic in the direction of the axis of the helix and have a degree one at infinity in the orthogonal direction. Résumé : Nous prouvons l’existence d’ondes progressives à vorticité sur une hélice pour l’équation de GrossPitaevskii dans R. Ces solutions sont d’...

متن کامل

Scattering for the Gross-Pitaevskii equation

We investigate the asymptotic behavior at time infinity of solutions close to a nonzero constant equilibrium for the Gross-Pitaevskii (or Ginzburg-Landau-Schrödinger) equation. We prove that, in dimensions larger than 3, small perturbations can be approximated at time infinity by the linearized evolution, and the wave operators are homeomorphic around 0 in certain Sobolev spaces.

متن کامل

Haus/Gross-Pitaevskii equation for random lasers

Marco Leonetti, and Claudio Conti, 1 Dep. of Physics, University “Sapienza”, Piazzale Aldo Moro 2, 00185 Roma, Italy 2 CNR-ISC Institute for Complex Systems Dep. of Physics, University “Sapienza”, Piazzale Aldo Moro 2, 00185 Roma, Italy and ∗Corresponding author: [email protected], current address: Photonic Crystal Group, ICMM,C.Sor Juana Ins de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain.

متن کامل

Rigorous derivation of the Gross-Pitaevskii equation.

The time-dependent Gross-Pitaevskii equation describes the dynamics of initially trapped Bose-Einstein condensates. We present a rigorous proof of this fact starting from a many-body bosonic Schrödinger equation with a short-scale repulsive interaction in the dilute limit. Our proof shows the persistence of an explicit short-scale correlation structure in the condensate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry, Integrability and Geometry: Methods and Applications

سال: 2013

ISSN: 1815-0659

DOI: 10.3842/sigma.2013.066